2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage
نویسنده
چکیده
Energy and exergy characteristics of a square cylinder (SC) in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H) is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo) and spanwise (v/Uo) velocities attain the values of u/Uo = 0.840→0.879 and v/Uo = 0.236→0.386 (Re = 10→50) on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m) non-dimensional temperature values (ζ) from ζ = 0.387→0.926 (Re = 10→50) at xth = 0 mm to ζ = 0.002→0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0→10 mm). Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.
منابع مشابه
Numerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder
Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...
متن کاملEnergy and Exergy Evaluation of Multi-channel Photovoltaic/Thermal Hybrid System: Simulation and Experiment
In this research, a pilot study and analysis of an innovative multi-channel photovoltaic/thermal (MCPV/T) system in a geographic location (35° 44' 35'' N, 50° 57' 25'' E) has been carried out. This system consists of integrating a photovoltaic panel and two PV/T heat-sink converters. The total electrical, exergy and energy efficiencies of the system at air flow rate of 0.005 kg/s and radiation ...
متن کاملA Theoretical Study of Steady MHD mixed convection heat transfer flow for a horizontal circular cylinder embedded in a micropolar Casson fluid with thermal radiation
In this study, an investigation is carried out for laminar steady mixed 2D magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder with constant surface temperature. In the present study, an investigation is carried out on the effects of physical parameters on Casson fluid non dimensional numbers. The governing nonlinear partial diffe...
متن کاملExergy Recovery in Gas Pressure Compression Stations (GPCSs)
The exergy analysis is a proper method for performance evaluation of industrial systems. A generic and detailed analysis of the GPCSs on the second gas pipeline of Iran is made by the means of exergy. The two main improvement measures of fuel pre-heating and steam injection technologies are presented for the current conventional stations. Steady state equations regarding the second law of ther...
متن کاملInteraction of laminar natural convection and radiation in an inclined square cavity containing participating gases
Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015